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This study applies the theory of stochastic processes to the equilibrium statistical 
physics of polymers in solution. The topics treated include random copolymers 
and randomly branching polymers, with self-consistent mean field effects. A new 
and more natural way of dealing with Boltzmann weighting is discussed, which 
makes it possible from the beginning of a calculation to consider only the 
"physical" polymer conformations. We also show that in general the random 
copolymer problem can be reduced to the ordinary polymer problem, and treat 
the self-consistent field problem for a general branching polymer. 
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1. I N T R O D U C T I O N  

The purpose of this study is first to introduce those topics in the theory of 
stochastic processes that can be used to simplify the calculations that often 
occur when analyzing the equilibrium statistical mechanics of polymer 
solutions, and second to illustrate the power of these methods on some new 
problems in this field. We have tried throughout to make this paper 
sufficiently self-contained that anyone familiar with standard methods of 
polymer physics will be able to use the methods discussed here with 
confidence, and we have avoided discussion of those methods from 
probability theory which are dangerous in the hands of the inexperienced. 
The discussion of probability theory may seem rather simple, and the 
reader may imagine that we are merely giving new names to old objects. 
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But what probability can bring to polymer physics is not just new names, 
but new techniques, and above all, new concepts, allowing problems to be 
tackled at a much higher level than simply the calculation of solutions. We 
shall describe how to determine the distribution of a piece of chain polymer 
placed in a potential; then the distribution of a piece of chain polymer with 
random "special" monomers in a potential; then the distribution of a 
branching polymer in a potential; and finally the self-consistent mean-field 
correction for a branching polymer in a potential. These problems may 
appear to be of steeply increasing difficulty, but the probabilistic methods 
we use cope easily with them all. 

In Section 2, we introduce the basic ideas of Markov processes, 
transition semigroups, generators, and conditioning a diffusion on an 
invariant event. Sections 2.1 and 2.2 serve partly to set up a common 
language between polymer physics and probability. In Section 2.3 we 
introduce the idea of a graveyard state: if we consider a polymer (before 
Boltzmann weighting) as the path of a diffusing particle, then a graveyard 
state is where the particle goes when it reaches the end of the path, i.e., 
when it dies. This is technically and conceptually convenient, in that it 
means that the particle does not just vanish when it reaches the end of the 
path. We end Section 2 with the theory and some examples of (Doob) 
h-transforming of a diffusion, which is the central technique used in the 
next section. For a more leisurely and thorough discussion of these topics, 
the reader is encouraged to consult Karlin and Taylor (4) to begin with, 
Qksendal (5) for a first account of stochastic calculus, and Rogers and 
Williams ~6) for a more wide-ranging selection. 

In Section 3, we begin by applying the methods of Section 2 to single- 
chain polymers in solution. For simplicity, in Section 3.1 we restrict attention 
to polymers that have an exponentially-distributed "length" (at least before 
Boltzmann weighting), but this is a restriction which will be relaxed later. 
By considering an applied potential field as a killing rate, we show that 
Boltzmann weighting can be replaced by conditioning (or h-transforming) 
the diffusing particle to go to a particular graveyard. This in turn is 
equivalent to adding a drift and modifying the killing rate of the diffusion. 
The rest of Section 3 consists of applications of this new approach to 
(i) random copolymers, (ii) randomly-branching polymers, and (iii) single- 
chain polymers of fixed length. 

2. M A R K O V  PROCESSES 

2.1. M a r k o v  Processes: Transit ion Semigroups 

Informally, a (time-homogeneous) Markov process with state space S 
is a random process (X,)t~>o which moves around S in a "memoryless" 
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way: where it goes from time t onward depends on its history {As,: u~< t} 
only through X,, the current state. More precisely, for any bounded 

f : S ~ ,  
E l f ( X ,  + u)I X,: s ~< t] = P,f(X~) (1) 

where the operators (P,),~>o form the transition semigroup of the Markov 
process X. 

The defining properties 

Pt+s=P,Ps for all t,s>.O 

O<~f<~l=~O<~P,f<~l for each 

P , I = I  for each t~>0 

of a Markov transition semigroup are easy to verify. 

Example ( i) .  

Example ( i i ) .  

(2a) 

t~>0 (2b) 

(2c) 

If S = ~, X, = Xo + ct, then P, f (x )  = f ( x  + ct). 

Brownian motion on N is a Markov process with 

oo e y2/2t (" 

P, f (x )  = J |-oo (2~zt) 1/2f(x + y) dy (3) 

Example (iii).  If S is a countable set, then the Markov process I" 
is called a Markov chain, and the transition semigroup can be expressed in 
terms of the transition matrices 

p o . ( t ) = P [ X , = j l X o = i ]  ( i , j~S ,  t>~O) 

In the case where S is finite, the behavior of X is very simple; it resides 
in its initial state i for a random time with an exponential distribution, and 
then jumps to some other state according to some distribution which may 
depend on i. 

We shall later encounter sub-Markovian transition semigroups, which 
satisfy the defining properties (2a) and (2b) of a Markovian semigroup, but 
not (2c). Thus, from (2b), P, 1 ~< 1 for all t ~> 0. As a trivial example of a 
sub-Markovian transition semigroup, fix some/~ > 0 and some Markovian 
semigroup (P,),~>o, and just consider (/5)z~>o=(e ~zP,)~>0! For a less 
trivial example, fix some subset F of S, and let T =  inf{u: X, e F}. Then we 
can define a sub-Markovian transition semigroup (P,) by 

P, f (x )  = EEf(X,)I~,< r~lXo = x]  (4) 

Exercise. Check (2a). The semigroup (P,),~o corresponds to the 
process "killed when it reaches F." There is a simple and natural way to 
convert a sub-Markovian transition semigroup into a Markovian one; can 
the reader see how ? Answer in Section 2.3. 



142 Jansons and Rogers 

2.2. Markov Processes: Generators and Resolvents 

The generator G of a Markov process with transition semigroup 
(Pt)t~>o is defined to be 

G f - l i m l ( p j - f )  (5) 
t!.0 / 

(for those f for which the limit exists). G is a linear operator defined on a 
suitable vector space of functions. Informally, we can recover the semi- 
group from G by the recipe 

P, = exp(tG) (6) 

The semigroup (P,),>~o is sometimes called the propagator. The transition 
semigroup (P,)t>~o of a Markov process is in some sense less fundamental 
than its Laplace transform (R)~)).~0, the resolvent of the Markov process: 

f? R~ - dt e-~tP~ (7) 

In view of (6), it would be no surprise if 

R~ -= dt e -At exp(tG) = (2 - G) -1 (8) 

While it is not easy to make exact sense of (6), it is possible to make 
exact sense of (8). See Chapter XIII of Feller (3~ for the basic ideas, and 
Chapter III of Williams (7) for more discussion. 

Two interpretations of the resolvent are possible, and helpful. Let T be 
an exp()~) random variable [that is, P ( T >  t ) = e  at for t />0]  independent 
of X. Then 

2 2R;.f(x)  = ,~e ~tPtf(x)  dt 

= E [ f ( X r )  lXo = x]  (9) 

The other interpretation is exemplified by taking f =  IA for some A, and 
then 

R ; . I A ( X ) = E [ f  ~ e-;"IA(Xt) dtlXo = x]  

I~t < T} I A( Xt) dt I Xo = x]  

= E[t0tal  time in A before TI Xo = x]  (10) 
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The resolvent R;. is the Green function for the process killed at rate )4; 
indeed, as 2 $ 0, we get in the limit the Green function of the process 
without killing. We shall later come to speak in terms of killing the process 
X at rate 2; the fatal blow comes at time T, and so R)ffA(x) is the expected 
time spent in A before killing by the process started at x. 

Exercise. Using the semigroup property (2a), obtain the resolvent 
identity 

R;-R~+(2-#)R~R.=O (2, # > 0 )  (11) 

Example ( iv). The generator of Example (i) is easily seen to be 

Gf(x) = cf'(x) ( f  e C 1 ) 

Here, C ~ denotes the space of functions with continuous derivatives of all 
orders up to and including the kth. Likewise, C~ denotes the space of all 
functions in C k which, together with their derivatives of all orders up to the 
kth, are bounded. 

Example (v).  For f ~ C  2 

1 oo e -  y2/2t 
l_t [PJ(x ) - f (x ) ]  =t  f_~ (2~rt)l/2 [f(x + y ) -  f(x)] dy 

=~ f 2  e _  (2zt) ' /2y2/2t[yf ' (x)+~y2f ' (x+0y)ldy 

where 101 ~< 1 

1 
~ f " ( x )  as t~,0 

and so for Brownian motion, 

Gf(x) = lf"(x) 

Romarks. The transition density 

pt(x, y) = (2~zt) -1/2 exp[ - (x - y)2/2t] 

(12) 

(13) 

of Brownian motion is the fundamental solution to the Kolmogorov 
backward equation 

0p 1 02p 
at 2 ~x 2' P ~  (14) 

822/'65/1-2-i0 
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We can rewrite this as 

0_p=@ (~5) 
Ot 

In greater generality, any nice second-order elliptic differential 
operator G generates a diffusion in the sense that the fundamental solution 
fit(x, y) to 

0fi=Gfi, f i0(-)=Sy(.)  (16) 
Ot 

defines a transition semigroup (fit), ~ o 

Ptf(x) = f fit(x, y ) f (y )  dy 

and the corresponding Markov process is a diffusion (has continuous 
paths). A physically interesting example comes from the Langevin equation 
with 

l 0 2 (~ 
G=~Ox2 2X Ox (17) 

where 2 > 0 is some parameter. In this case, the Kolmogorov backward 
equation can be solved explicitly to give 

f i t(x,y)=[2rr(1-e 2~')/22] ' / 2exp[ -2 (y -xe  J")2/(1-e 2;.,)] (18) 

This can be obtained with a minimum of calculation if one knows some 
stochastic calculus; see Section V.5 of Rogers and Williams. (61 

Exorcise. If B is Brownian motion, and Xt = Bt + ct, where c is 
constant, prove that the generator of X is �89 0 2/0x2 + c 8/0x. 

E x a m p l e  (vi) .  Assuming S is finite, let the exponential residence 
time in state i have mean 1/q, and let the probability of a jump from i to 
j be Pu' Then 

1 1 
t [Ptf(i) - f ( i ) l  = t {E[f(Xt) lX~ = i] - f ( i )  } 

t ( 1 - - q , t ) f ( i ) +  ~ q~tpo.f(j)--f(i)+o(t 
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since with probability 1 - q i t  + o(t) there is no jump between 0 and t, in 
which case J(t = i, and with probability qit + o(t) there is a jump between 
0 and t, in which case J( jumps to j with probability p,j. The probability 
of more than one jump in [0, t] is o(t). Hence 

Gf(i) = - q i f ( i )  + ~ qiPijf(j) (19) 

One usually makes the notation more compact by thinking of the function 
f as the vector (f(i))i~s and by defining the Q-matrix of this chain by 

q~j=q~po ( i e j )  

= -q ,  ( i = j )  (20) 

so that the row-sums of Q are zero, and off-diagonal entries are 
nonnegative. Then the generator G is just the matrix Q, with Gf equal to 
the function (vector) Q_f: 

Gf(i) = Qf(i) 

Since S is finite, the matrix exponential 

P, = exp(tQ) (21) 

is well defined, and is in fact the transition semigroup of the chain. 

Exercise. Prove that (P,) is a Markovian transition semigroup [so 
check properties (2a)-(2c)]. Prove that Q is the generator of (P,). 

2~3. M a r k o v  Processes: Death and Graveyards 

We introduced sub-Markovian transition semigroups in Section 2.1, 
and now we show how to make the sub-Markovian transition semigroup 
(Pt)t~>o into a Markovian one. Adjoin some state 0 to the state space S, 
and now send the process to 0 when it is killed. Once it is in 0, it stays 
there. Such a state 0 is called a graveyard state, not surprisingly ! Formally, 
we define the new semigroup (P,)t>~o by 

P , f ( x ) = P , f ( x ) + f ( O ) [ 1  - P , l (x ) ]  (x~S)  (22a) 

P,f(O) = f ( 0 )  (22b) 

for any t>~O, f:  S w  {0} --* ~. As an exercise, check that (22a)-(22b) does 
define a Markovian transition semigroup, and convince yourself that it 
corresponds to the intuitive descrition we gave in terms of killing. 
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The example we gave in Section 2.1 of the sub-Markovian semigroup 
(e-~tPt)~>~o has a useful probabilistic interpretation; take a random 
variable T with density tte ~t, independent of X, and kill X at the time T. 
Then 

E [ f ( X t ) I { t < r } l X  0 = x ]  = e  utPt f (x  ) 

so the semigroup (e "tP,),>~o corresponds to X killed at an independent 
exponentially-distributed time. We speak of X killed at rate #, because 

P [ T - t < ~ e l T > t ] = l - e  ~ =tte + o(e) (23) 

as e+0; so, given that Thas  not yet happened, the rate at which it happens 
is#. 

Let us compute the generator of X killed at rate #. If f :  S u {(? } ~ ~, 
the transition semigroup of X killed at rate tt is (P,~),~>o given by 

P ~ f ( x )  = e -" 'P~ f (x )  + (1 - e "*) f(O) 

P~f(O) = f(O) 

(x e S) 
(24) 

Hence, for x ~ S, 

G~'f(x) = lim 1 ,+o t [P~ , f ( x ) -  f ( x ) ]  

=l im 1- {e ~ ' t [ p J ( x ) - f ( x ) ] - ( 1  - e ~ " ) f ( x ) + ( 1 - e - U t ) f ( a ) }  
,+0 t 

= O f ( x )  - Z ( x )  + Z(a)  (25) 

Often in practice one thinks of the generator G ~ as acting on functions 
defined only on S-- in  which case we set f ( ~ ) =  0 by convent ion--and then 
the generator takes the simple form 

G" = G - # (26) 

We shall, however, have need of the full form (25) of G ~. 
One could envisage a situation where the Markov process was being 

killed in some part of S, but not elsewhere, or more generally, where the 
rate of killing depends on the position of the particle. We now explain how 
to treat this situation. The idea is to imagine that there is an exponential 
random variable T of rate 1 (so with density e - ' )  given to us, independent 
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of the process X. If the rate of killing when at x is V(x), we compute the 
"accumulated risk" up to time t, 

R, =. V(Xs) ds (27) 

and kill X when R, = T. Thus, when X is in regions where V is large, the 
accumulated risk climbs quickly, and we are more likely to see killing than 
in a region where V is small. The memoryless property of T 

P [ T -  t > sl T> t] = P I T > s ]  

ensures that the probability of killing in (t, t + dt) depends only on X, and 
not on the accumulated risk R,. Notice that the special case V(x)= g for 
all x gives killing at time T/#--which has density/~e -"t, exactly as before! 
To compute the (sub-Markovian) semigroup of X killed at rate V, note 
that if we condition on the whole of the process {Xs: s~>0}, then 

P[killing comes after t IX] = P I T >  R, iX] 

= exp( - R,) (28) 

Hence the killed semigroup v (P t ) t>o  is just 

P V f ( x ) = E [ f ( X , ) e  R' lX0=x  ] + f ( c ~ ) E [ 1 - e  R*lX0=x] (29) 

Thus the generator is 

GVf(x)=l im 1 [E(f(X,)e  R ' lXo=x)--  f ( x ) +  f (O)E(1- -e  R' lX o =x ) ]  
tlo t 

= G f ( x ) -  V ( x ) f ( x ) +  V(x ) f (e )  (3O) 

We shall be using these ideas a lot in Section 3. 

2.4. M a r k o v  Processes:  h - T r a n s f o r m s  

The notion of an h-transform of a Markov process is central to the 
discussion of polymer models which follows; i t  allows us to replace 
Boltzmann weighting as an equivalent conditioning. We begin with a 
concrete example. 

Example (vi i ) .  Consider a random walk on {0, 1 ..... N}, which 
stays in state i for an exponentially distributed time mean 2 1, then jumps 
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with equal probability to i+  1, i - l ,  for i=  1,..., N - 1 .  Once the process 
reaches 0 or N, it stays still forever. Then 

i 0 0 . - . )  Q =  2 2 - 2  2/2 

Let us compute for this example 

h(i) =- P[X,  = N eventually [ Xo = i] (31) 

Evidently, h(0) = 0, h(N) = 1, and by considering what happens at the first 
jump of X, 

h ( i ) = l h ( i + l ) + � 8 9  (i= 1,..., N -  1) (32) 

From this it follows easily that the unique solution is 

h(i) = i/N (33) 

Notice that (32) says that Qh = 0, so 

P,h = exp(tQ)h = h (34) 

Now we investigate for this example the key concept of conditioning 
the Markov process. The event F =  {X ,=  N eventually} has the property 
that it is determined by {Xs: s>~K} for each K, however large. Thus, 

P[X~= jIF,  Xo= i] 

P[X,  = j, FI Xo = i] 

P[F[ Xo = i] 

- P [ F [ X t = j ' X ~  where p u ( t ) - P [ X t = j l X o = i ]  
h(i) 

P [ F I X , = j ]  pu(t) 

h(i) 

since Xis Markovian and Fis determined by (Xu)u~> t 

h(j)  pu(t)  

h(i) 

The importance of this is that the old Markov chain has been trans- 
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formed into a new Markov chain with transition semigroup (P,)t>~o = 
( ( p i j ( t ) ) i ,  jES) t>~O defined by 

~o.(t) = po(t) h(j)/h(i) (35) 

Exorcise. Verify that (P,),~>o satisfies (2a)-(2c), using (34) for (2c). 
In complete generality, a function h: S--, [0, oe) for which 

P,h=h (t>.O) (36) 

is said to be harmonic [with respect to the semigroup (P,)t~>o]. 
It follows from (36) and the definition (5) of the generator that if h is 

harmonic, then 

Gh = 0 (37) 

One can again define a semigroup (Pt),>~o by 

1 
P t f  =~ P,(hf) (38) 

The interpretation in terms of conditioning is now not quite so direct, but 
one can make up some sort of explanation, the details of which we shall 
not go into here. 

In terms of generators, the h-transform of the original process has 
generator G defined by 

1 
Gf= ~ G(hf) (39) 

Returning to the random walk example, Example (vii), the h-transformed 
chain was just the chain conditioned on the event F. The original generator 
G was the matrix Q 

qi, i+ 1 = 2/2 = qi, i -  1 

and the harmonic function h was h(i)= i/N, so the new generator is 

h(i+ l) i + 1 2  
~]i,i+ 1 --= qi, i+ 1 h(i) i 2 

i - 1 2  
qi, i 1 -  i 2 

Notice that ql0 -- 0, as it must be if the process is to get absorbed at N. 
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Our final examples of harmonic functions, also to do with Brownian 
motion, illustrate a simple but important trick for dealing with a lack of 
time homogeneity. Suppose, for example, that one considered 

x, = B, + #(t) 

where B is Brownian motion on ~, and # is some nonrandom continuous 
function. Then X is not a Markov process, because the distribution of X~+ s 
given X t is N(#(t + s ) -  #(t)+ X,, s), which depends on t as well as on Xt. 
[Here we use the notation N(#, a 2) for a normal distribution with mean # 
and variance 0-2.] However, if we consider the space-time process 
(t, X,)--so we keep track of time as well as the position of the process 
X--we have a Markov process. Indeed, 

Gf(t, x) = lim i [P~f(t, x) - f ( t ,  x)] 
eJ.O 8 

= lira 1_ f e y2/2e 
~+o e J (2roe) 1/2 {f(t+e, x+ y + # ( t + e ) - # ( t ) ) - f ( t ,  x)} dy 

0f 1 0 ' f  0f 
= ?5 + + # ' ( t )  --ax (40) 

(The sign of the first-order terms is correct, despite the apparent clash with 
the Kolmogorov backward equation; time here is running in the opposite 
direction to the direction in the Kolmogorov backward equation.) 

Example (viii). For the space-time Brownian motion (t,B,),>~o 
in R ", 

h(t, x ) -exp{c-x -  �89 (41) 

is a (space-time) harmonic function, as can easily be verified directly by 
computing P~h(t, x). [It is trivial to check that Gh = 0, but a little care is 
needed; this is a necessary condition for h to be harmonic, but not 
sufficient. Consider, for example, the function f (z)= Re(exp(z3)) of the 
complex variable z. Being the real part of an analytic function, it satisfies 
Laplace's equation, but P t f  is not defined for t > 0 ,  since f is not 
integrable with respect to the Brownian transition density.] 

For the space-time Brownian motion h-transformed by e x p ( c - x -  �89 
one gets 

�89 e . v f  
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As one knows if one did the earlier exercise, this is the generator of 
Brownian motion with constant drift c. 

E xa mpl e  ( ix) .  We consider the celebrated Brownian bridge, which 
is a Brownian motion in ~n "conditioned to be at a e N" at fixed time T." 
We take the space-time process 

X, = (t, B,) (42) 

for 0 ~< t < T. It is not hard to confirm that 

h ( t , x ) = [ 2 ~ ( T - t ) ] - n / Z e x p [ - l x - a l Z / 2 ( T - t ) ] ,  t < T  (43) 

is harmonic, with the informal interpretation h( t, x )  = P( B r = a lB, = x ). 

For the Brownian motion "conditioned to be at a e ~" at time T" we 
get 

~ f = ~ A f  x - a l  .Vf ( t < T )  (44) 
2 T - t  

The process corresponding to this generator really does go to a at time T, 
as shown from Section IV.40 of Rogers and Williams, (61 for example. 

3. P O L Y M E R S  

3.1. Single-Chain Polymers in Solut ion 

All of the polymer examples we shall consider are of processes which 
can diffuse and jump, and we have just seen what happens when one condi- 
tions (or h-transforms) simple examples of such processes. "Putting the 
process into a potential" can be interpreted in terms of conditioning, and 
this renders the problem amenable to techniques of Markov process theory. 
The physical importance of putting a polymer into a potential is great 
enough to justify the effort required to understand these unfamiliar 
probabilistic ideas. 

In this section, we shall apply the methods of Section 2 to the theory 
of polymers, as set forth in Edwards and Doi ~ or de Gennes, ~z> for 
instance. We begin by considering the equilibrium statistical mechanics of 
a solution of ideal single-chain polymers in a potential field V when weakly 
coupled to a large reservoir (where the potential is zero) of polymers 
having an exponential "length" distribution. Since we model the polymers 
as Brownian paths (i.e., a scaling limit of random walk as the step size and 
time step tend to zero) X(t) ,  O<~t<~M, it is better to refer to these 
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polymers as having an exponential distribution of lifetimes rather than 
"lengths," as a Brownian path almost surely has infinite length. So we take 
M to have probability density function #e -u', where # is the rate of the 

1 exponential random variable; this gives the mean life span E(M)=t~ 
The reasons for considering this size distribution of polymers are (i) it 

is a good approximation in some applications, and (ii) it leads to much 
simpler mathematics than for polymers of fixed lifetime. Note that in 
principle results for polymers of exponential lifetimes can be turned into 
the corresponding results for fixed-size polymers by an inverse Laplace 
transform, when monomer-monomer interactions are neglected. 

If F[X] is a functional of the polymer shape X, its expectation (or 
ensemble average) is given by the usual Boltzmann weighted average, 
namely 

Z~lEX { F [ X ] e x p ( - ~ f ~  V(X(t)))dt)} (45) 

where Vis the potential per unit time (which is proportional to the potential 
per monomer), Zx is the partition function for polymers "starting" at x, 
and E x denotes the expectation for polymers starting at x. [So Z x =  
E ~ exp( - (1 /kT)~  V(X(t))dt.] In future we include the (kT) -1 factor in 
V (or choose units so that kT= 1). [In polymer physics (45) is often 
written informally as a path integral.] We now use the probability theory 
of the last section to rewrite (45) in a much more convenient form for 
further analysis, but for this we need to assume that V(x) >~ 0 for all x. The 
restriction to nonnegative V is not essential to the results, although it is 
essential to the probabilistic interpretation of the methods of proof. 

Consider the Brownian path modeling the polymer before Boltzmann 
reweighting to be the path of a particle in "real" time. When V= 0 the 
polymers have lifetimes that are exponential random variables of rate #, so 
we can think of these polymers as being the paths of Brownian particles 
killed at rate #. When particles are killed in this way we put them in a 
graveyard 6. [Remember that one reason for introducing graveyard states 
is that the probability that a given particle is somewhere (i.e., in ~" or a 
graveyard) is always unity--so probability is conserved!] For convenience 
we shall say that particles in 0 were killed naturally. 

Now we are going to consider also unnatural killing: namely, when at 
x, the particle is killed unnaturally at rate V(x)>10 and is sent to a 
different graveyard state A. As before at (28), the probability that there is 
no unnatural killing by time t, given (X,,: u ~> 0), is 



Probability Theory and Polymer Physics 153 

so the probability that there is no unnatural killing before the natural 
lifetime M, conditioned on ((Xu).~>0, M) is simply 

Thus 

e x p ( - R M ) = e x p { - f ~ V ( X s ) d s }  

Z x - E X e x p { - f ~  V(Xs)ds} 

- PX(no unnatural killing before natural lifetime M) (46) 

and the Boltzmann weighting (45) bears the simple probabilistic interpretation 

Z ~ l E X { F [ X ] e x p ( - f o V ( X , ) d s ) }  

= E ~ { F(X) IX dies naturally } 

= E~{F[X][X ends up in •} (47) 

IX will end up either in 0 (if killed naturally) or in A (if killed 
unnaturally)].  

It may appear that all we are doing is defining lots of new terms, but 
in a moment we show that the Boltzmann weighting can be "built into the 
path" in a very natural way. Indeed, the reason that Boltzmann weighting 
is necessary is that we are using the "wrong" measure, so we now change 
to the "right" measure and put the Boltzmann factor out of sight! To do 
this we need 0 ( x ) - P ~ ( X  dies naturally), which is simply the partition 
function described in probabilistic language; we write ~b(x) instead of Z~ to 
remind ourselves that we are dealing with the case V >/0, when the partition 
function Z x may be interpreted as a probability. We can find a partial 
differential equation for 0 by arguing informally as follows: consider what 
can happen to the Brownian particle started at x in the first dt of its life 
and then consider the rest of its life (if "alive") from where it is at time dt. 
In the first dt the probability that it is not killed is 1 - (p + V(x)) dt and 
the probabilities that it goes to ~ or A are p dt and V(x) dr, respectively. If 
the particle is not killed in the first dt, then the expected value of 0 from 
its position at time dt is PdtO(x) = O(x) + Go~k(x) dt, where Go - �89 2 is the 
generator of the (unkilled) Brownian motion. Thus, ignoring terms of 
order dt 2, 

$(x) = { 1 - (# + V(x)) dt} PatO(x) + I~ dt ~(~?) + V(x) dt tp(A) 

= {1 - ( # +  V(x)) dt} {O(x) + GoO(X) dt} +# dt (48) 
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since clearly 0(~)=  1 and O(A)=0 by the definition of 0. So 

O(x) = O(x) + {aoO(X) + ~(1 - O(x) ) -  V(x)  0(x)} dt 

This gives the equation for O(x), namely 

Co~,(x) + ~( l - O ( x ) ) -  V(x)  ~ ( x )  = o (49) 

The "boundary conditions" follow from the fact that O(x) is a probability, 
so that for all x we require 0 ~< O(x) ~< 1. 

We can also derive (49) quickly using resolvents as follows. From 
(46), 

O(x)=EXexp{-;?V(X,)ds} 

= EX fo lZ exp(- #t) exp{- fs V(Xs) ds} dt 

=#R~l (x)  (50) 

R v where ( ~)).>o is the resolvent if the process killed at rate V: if f ( 0 ) =  
f(A) = O, then 

RV f(x)=EX foeXp{-2t- f~  V(Xu)du} f(X,) 

= ( 2 - a  v) a f(x) 

= (2+ V-Go)-lf(x) 

dt 

(51) 

from (8) and (30). Applying (#+  V-Go) to both sides of (50) gives (49). 
We now return to (47) and reformulate it in terms of ~. The generator 

for (the/~ and V killed process) X is 

G = �89 2 - O* + V(x) )  (52) 

(at least on functions which vanish at ~, A). This can now be transformed 
into the generator G for the process conditioned on natural death, which 
is the C-transform of G; we shall denote this new process by .g. As 
explained in the last section, for any test function f vanishing at 0, A, we 
have G f =  ~k-lG(~f). Thus, using the differential equation (49) for ~, 

~f = �89 + ~-l V~k.Vf - ~  f (53) 
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i.e., the generator for 2 is 

~ =  �89 $-~ V4'.V ]~ (54) 
4, 

It is important to note that the conditioned process J~ always goes to 0 
(i.e., dies naturally), but with a new rate/2(x) = t~/4'(x). Note that the only 
other effect of conditioning on natural death is the drift term, ~-~ V4'. V, 
in the generator, i.e., the conditioned particle tends to drift away from 
places where V is large. To sum up, Boltzmann weighting is equivalent to 
drift u(x)=-V(log4'(x)) and a new killing at rate fi(x)=-t~/4'(x), now 
natural. Indeed, (47) becomes 

Z ~ ' E  x F [ X ] e x p ( - f ~  V(Xs)ds)}=EX{F[ ' ]}  

This approach is expected to be useful in both numerical and analytical 
work, since only the paths that represent naturally-killed polymers need to 
be considered. This is particularly useful in problems where natural death 
is unlikely or in limits where it is zero! 

To compare the two ways in which Boltzmann weighting can be 
performed, namely either by building it into the generator G for ~" at the 
beginning of the calculation, or by working with the unconditioned process 
X and then throwing away the unphysical paths, we consider a simple 
example. 

Example  (x).  Consider polymers in a half-space, which we may 
treat as a one-dimensional problem. In this system 

V(x) = { 0  co for x<O 
for x>O 

Thus, the partition function for polymers starting at x is 

4'(x) -= px(dies naturally) 

=px(x(t)>>.O for O ~ t ~ M )  

= 1 - e  -~ (x>O) 

where 0 =  (2#) 1/2. Hence the generator for the process X conditioned on 
natural death is 

- ~ l  ~32 + 0 ~3 # (55) 
(~=2c~x e 7 o77- 1 c~x 1 - e  -~ 
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Notice how the drift away from the boundary x = 0 tends to infinity like 
x-1 as x + 0. In fact, any drift that is asymptotic to b/x  as x J, 0 will prevent 
a particle hitting 0 (whatever the killing rate) if and only if b ~> 1/2. Observe 
that the natural killing rate also tends to infinity as x + 0. This behavior is 
typical of any system with killing boundaries. 

For this system consider x > a > 0 and let us determine the probability 
~(x) that ~- hits a. Since ~(x) is harmonic for )7(t/x Ha), i.e., the process 
that is like X(t) up to the time H a - i n f { t : Z ( t ) = a }  (which may not 
happen!) and sticks at a until natural death, we have 

G~(x) = 0 for a < ~ x < o o  (56) 

with ~(a )=  1, i.e., it is sure to hit a if it starts there. Since ~(x) is a 
probability, and so 0 ~< ~(x) ~< 1, we clearly want the solution that remains 
bounded as x tends to infinity. Thus, 

Oa e - -1  
~(x) = ~ 1  

An alternative method of calculating ~(x), which would be much more 
usual in polymer physics, is to work throughout with conditional 
probabilities rather than conditioned processes as above. Thus, if 0 < a < x, 

~(x) -=/3x()7 hits a) 

= P x ( X  hits a l X  dies naturally) 

p x ( x  hits a and X dies naturally) 

P x ( X  dies naturally) 

P x ( X  hits a ) P a ( X  dies naturally) 

W ( X  dies naturally) 

e 0(x a)(l__e-0a) 

- -  1 - -  e -~  

e ~ -- 1 

- -  e ~  - -  1 

as before. 
In the above example there is little advantage in considering the 

process J~ explicitly. However, the advantage becomes much greater in 
more complex problems, and the physics is much clearer when every path 
considered corresponds to a physical polymer. 
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3.2. Random Copolymers 

Consider a generalization of the theory in the previous section to 
include the effect of random "special" monomers. Again we consider 
systems in equilibrium with a large reservoir of (ideal) polymers of 
exponential lifetimes. In the reservoir we suppose that the potential fields 
for both the ordinary monomers and the special monomers are zero, and 
we suppose further that the rate of the special monomers is a constant ? (in 
"time" along the path) and independent of the path. Clearly, outside the 
reservoir, where in general the potentials are nonzero, the rate of special 
monomers will usually depend on the path. 

Suppose the potential energy of the polymers has the form 
N 

[g V(X(t))dt+ ~ U(X(Ti) ) (57) 
~0 i = 1  

where Ti, 1 ~< i ~< .IV, are the times of the special monomers and U(x) is the 
potential energy of a special monomer at x. If we assume that U(x) >>. 0 for 
all x, then we can interpret the effect of the ith special monomer on the 
Boltzmann factor as a probability 1 - e  -v(x(r,)) of unnatural death. In 
many applications we are interested in properties of the polymer shape and 
are not concerned with the special monomers explicitly, though the special 
monomers do have an effect on polymer shape through the Boltzmann 
factor. For example, we may wish to compute 

-1  x v ( x , )  d r -  ~(x(Ti)) (58) Z x E FIX] exp - i= 1 

where F[X] is a functional of the polymer shape X only. In such problems 
we can average out the effect of the special monomers and include it in the 
definition of V in the following way. Consider that part of the Boltzmann 
factor that depends explicitly on the special monomers, namely 

exp { -  ~ U(X(T~))} (59) 
i ~ l  

Given a path X(t), 0 <<. t <~ M, we must average (59) over all positions and 
numbers of the special monomers. Let E(-IX, M) denote the expectation 
given the path X and the lifetime M. Then 

E ( e x p  {- i~1U(X(T~))}  X,M)  
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i.e., we may first average along X with a given number of special monomers 
N and then average over N. Since before Boltzmann weighting the special 
monomers occur with constant rate ~, we know that N is a Poisson 
random variable with mean 7M, given X and M. Also given X, M, and N, 
the positions of the special monomers are independent and uniform in time 
along 2". Thus, 

E(exp[- L U(X(Ti))] X,M,N)=(l f?expE-U(X(t))]dt) N 
i = 1  

and so 

(TM)n e x p [ -  U(X(t))] dt = L exp ( -TM)~- - - . v  
n = 0  

=exp(-TM)exp{~(expE-U(X( t ) )]d t}  

{ 2  } = exp - 7  (1 - e x p [ -  U(x(t))]) dt 

Thus, the full Boltzmann factor for the random copolymer after we have 
averaged out the effect of the special monomers is 

2 e x p -  {V(X(t))+~(1 -expE-U(X(t))])} dt (61) 

So this is exactly the same Boltzmann factor as for an ordinary polymer in 
a potential 

Ve(x)- V ( x ) + 7 ( 1 - e  u(x)) (62) 

that is, we have reduced the random copolymer problem to the ordinary 
polymer problem. 

Thus, for example, 
of (49): 

~(x) =-Ex(X dies naturally) solves the analogue 

Go0- (u + <)0 + ~ = 0  (63) 

One property that is of some interest is the rate of special monomers 
~7, say, for the process conditioned on natural death ~. On the conditioned 
path the only monomers we see are those that did not lead to unnatural 
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death. Consider this as follows. Since each special monomer leads to 
unnatural death with probability 1 - e  u(x), we can split the special 
monomers into two groups: (i) lethal special monomers occurring with rate 
7 L ( X ) = ? ( 1 - - e  -U(~)) and (ii) harmless special monomers occurring with 
rate 7n(X)=-ve -U(x). [-Note 7L(X)+?H(X)=7. ] Since the lethal and 
harmless special monomers are independent, given the path, the effect of 
conditioning on natural death is to simply remove the lethal special 
monomers. Thus, the rate of special monomers on the conditioned path 

is 

~ ( X )  = YH ( X )  = ye- u(~) (64) 

We can in fact generalize a little more. In the above, all we have really 
used is that the probability that a special monomer is harmless is e-U(x~ 
Thus, equally we could consider anything we like attached on the special 
monomers provided we know the probability F(x), say, that a special 
monomer at x and anything attached to it is harmless, i.e., does not lead 
to unnatural death. For  example, we could attach rods or Brownian paths 
of fixed lengths to form a bottle-brush-shaped molecule like a proteoglycan. 
For all such systems the effective potential is 

V,(x) -- V(x) + ~ ( 1  - r ( x ) )  (65) 

and the rate of the special monomers on the conditioned path X is 7F(x), 
i.e., the rate of harmless special monomers before conditioning. 

Another example of a general special monomer is provided by ran- 
domly branching polymers, which we now consider in detail. 

3.3. Randomly Branching Polymers 

A randomly branching polymer may be modeled as a branching 
Brownian motion, in the absence of potential fields. So consider a system 
in equilibrium with a large reservoir of ideal branching polymers. In detail, 
before Boltzmann weighting, we model these polymers as Brownian paths 
that split into two at constant rate 2 and die (naturally) at constant rate 
/~ (/> 2). Many other distributions of branching polymers can be constructed 
in a similar way, although here we are more concerned with the 
mathematical techniques available to analyze such systems. 

As before, if the external potential per unit time V is positive, then we 
can interpret V as a rate of unnatural death. Thus, in this case the partition 
function ~(x) for polymers starting at x can be calculated along the lines 
of (48)-(49) as follows: 

822/65/1-2-11 
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O(x) = PX(natural death on all branches) 

= { 1 - I-,~ + ~ + v(x)]  dt} [~,(x) + �89 dt] 

+ 2 dt ~92(x) +/~ at ~(o) + V(x) dt t~(A) (66) 

where ~(~?)= 1 and O(A)=0 by the definition of ~. This gives 

l v 2 g , -  ~.~(1 - g,) + ~,(1 - ~ , ) -  v g , = 0  (67) 

where the boundary conditions follow from the requirement that for all x 
we must have 0 ~< O(x) ~< 1, as ~ is a probability. 

Once again, we can calculate (67)just as easily using the resolvent. At 
rate #, natural death occurs, and at rate 2 two independent particles are 
created, both of which must die naturally. Thus 

@ ~  V ~ 2 R~ +~(,@ + # )  (68) 

Since R v = ( 2 + / ~ +  V - G o )  1 [see (51)], (67) follows immediately. )~+,u 

Note that we could have determined ~, by using the theory of the last 
section, by setting the splitting rate 2 = 7, the rate of special monomers, and 
setting the probability F(x)  that the special monomer is harmless (i.e., does 
not lead to unnatural death) to be equal to O(x). The reader should try 
calculating g,(x) by this method, and show that conditioning on natural 
death leads to a new splitting rate ~(x) and killing rate /~(x) (now all 
natural) given by 

i(x)=~O(x) 
~(x)=~/r 

(69) 

We now derive the motion of a "randomly-chosen path" through the 
(conditioned) polymer. One way to think of this is that the polymer starts 
as a single particle at x, diffusing until it dies, or splits into two particles. 
If it splits, then one of the particles is chosenat  random and followed, until 
that one either dies or splits. At each splitting, one of the descendants is 
chosen at random and followed. Another way to think of this is to consider 
the original particle as the "parent" particle, which retains its identity at 
the times of splittings. Thus, the "randomly-chosen path" can be thought 
of simply as the path of the parent particle. Before Boltzmann weighting, 
this parent particle is marked at rate 2 with special monomers ( = descendant 
particles), killed naturally at rate #, and unnaturally at rate V. Each special 
monomer is lethal with probability l -  0(x). Thus, if we condition on no 
unnatural killing for all branches, then we are back in the situation of 
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Section 3.2; after weighting, the generator of the movement of the parent 
particle is the conditioned generator 

1 

1 

4, 

a(fO) 

{ ~ V 2 ( f O ) - t t f ~ - [ V +  2 ( 1 - ~ ) ] f ~ }  

1 V 2 f + V  log q/Vf #f  
2 

for f vanishing at •, d. So after conditioning (i.e., Boltzmann weighting), 
the parent particle moves like a Brownian motion with drift V log ~, killed at 
r a t e  

We end this section by solving the self-consistent mean-field problem 
for a branching polymer, assuming that the splitting rate 2 is strictly less 
than the death rate/~. We consider the equilibrium statistical mechanics of 
a solution of branching polymers in a potential V, where 

V(x) = Vo(x) + t ip(x))  (70) 

with V0 the external potential and f a nonnegative function of the mean 
monomer density p. The potential in the large reservoir is identically zero, 
and the mean monomer density there is equal to P0, given by 

m 
P o = # _  2 

where m is the mean number of polymers per unit volume. We shall now 
derive an expression for the monomer density p when in a potential V; the 
relation (70) between V and p will be the self-consistency condition which 
must be satisfied. 

Let us consider a single branching polymer started at x, killed at rate 
V. We take some set A and define 

h(x)=_EX(total time spent in A: no V-killing on the polymer) (71) 

The time spent in A decomposes into the time spent in A before the first 
killing/split, plus the time spent in A afterwards. Thus 

EX(time spent in A before first killing/split: 

no V-killing on the polymer) 

= RV+ ~,IA O(x) (72) 
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where q/ is as at (66)-(67). The appearance of ~ in (72) is explained by 
noticing that the time spent in A before the first killing/split only 
contributes to the expectation defining h if there is no subsequent 
V-killing--and the probability of no subsequent V-killing is given by ~. 
After the first killing/split, there will only be time spent in A if there was 
a split. Now there are two particles which may (together with their 
descendants) spend time in A. Each will contribute on average h, but only 
if the other particle and its descendants do not suffer V-killing. Thus, the 
contribution to h from time in A after the first killing/split is simply 

Hence 

2RV+.(2hO) (73) 

h = Rv+.(IA~/)+ 2R v+.2h~p 

from which we immediately obtain 

(,Z + /~ + v - l V 2 ) h = I ~  + Z:~h~ 

or equivalently 

( p - 2 +  U- � 8 9  

where 

(74) 

(75) 

U = V+ 22(1 - ~/) 

Thus, the expected time (which is proportional to the expected number of 
monomers) in A is 

m f~. h(x) dx =m f~,, RV._~(IA~/)(x) dx 

= m f~ dx :A ru v :~(x, y)~/(y)dy (76) 

where r~(-, -) is the resolvent density of R~:. This is symmetric in x and y, 
so (76) becomes 

= m  fA ( : t -  2) -1 O(y) PY(no U-killing of Brownian motion before r._:.) dy 

(77) 

where Tu_x is an independent exp(# -2 )  random variable. Defining 

~(y) - P*(no U-killing of Brownian motion before Tu_ :.) (78) 
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then 

so that from (76)-(77) the monomer density is simply 

(79) 

p (80) 

Hence Boltzmann weighting is given by ~, where ~ is determined from the 
pair of coupled partial differential equations 

and 0~<~, ~ <  1. 

3~4. Back to Single-Chain Polymers 

We end this study with a brief look at systems of single ideal chains 
of fixed lifetimes (or "lengths"). The reason we shall not spend long on this 
topic is that basically the same methods as in previous sections are still 
applicable, but it is much harder to obtain closed-form solutions (even in 
some seemingly simple problems). Without loss of generality, suppose that 
all the polymers in our system are of unit lifetimes, i.e., in the large reservoir 
they may be modeled as Brownian paths X(t) with 0~< t~< 1. The only 
mathematical difference between this system and a system of exponential 
polymers is the explicit time dependence. This can be removed by working 
with space-time Brownian motion (t, Xt),>.o rather than (J(t)t>_.0 itself. 
Space-time Brownian motion has generator 

c~ 1 2 

As in previous sections, an external potential V(x) (i>0) can be interpreted 
as a rate of unnatural death. Thus, the partition function ~(t, x) for 
polymers "starting" at (t, x) is given by 

~(t, x) = P(t'X)(natural death) 

= P("X)(no V-killing before time 1 ) (0 ~< t ~< 1 ) 
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Thus, the equation for q~ can be determined as follows: 

~ ( t ,  x )  = (1 - V(x) dt)(~,(t, x)+ G~(t, x) dt) + V(x) dt 0(3) 

where O(A)= 0 by definition. Thus, 

a ~ , ( t ,  x )  - V ( x )  ~,(t, x )  = o 

where 0 ~< O(t, x) <~ 1 for all x and 0 ~< t ~< 1. Clearly, if we had wanted to, 
we could have considered a potential V which is also a function of time. 

As in earlier sections, we can condition on natural death, which for these 
polymers means living until t = 1. The new generator G for the conditioned 
process (t, 2 , )  is given by 

Gf(t, x) = O=l(t, x ){ (a  - v)(tp(t, x) f ( t ,  x))} 

Thus 

~f=~, l{Oaf + v o . v f  +(60-v~ , ) f }  

= Gf + V(log 0 ) . V f  

o r  

1 2 
G = ~ + ~ V  + V l o g  ~(t, x ) .V  

which is the generator of space-time Brownian motion with an additional 
drift (0, V log ~(t, x)). 

Exercise. Consider ideal single chain polymers in a slot of width a, 
say, with killing boundaries, and investigate the behavior of both fixed-time 
polymers and exponential polymers. Show that the typical end-to-end 
distance for exponential polymers is always less than, or of the order of, a, 
whatever the natural killing rate #. 

This exercise highlights the differences between fixed-time and 
exponential-time polymers. 

4. CONCLUSION 

We have demonstrated the power of some of the techniques of the 
theory of stochastic processes on polymer problems. The most important 
result is that Boltzmann weighting a diffusion (modeling a polymer) is 
equivalent to having an additional drift and a new killing rate. This 
observation is likely to be useful in numerical work, as well as analytical, 
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since only the realizations of the path that correspond to "physical" 
polymer conformations need to be generated. We have also shown that 
random copolymer problems can be reduced to ordinary polymer problems, 
and have discussed randomly-branching polymers, including the effect of a 
self-consistent mean field. 

Several more applications of this approach to polymer physics will 
appear  elsewhere, together with some more probabilistic "power tools"! 
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